Existence of Solutions for P-laplace Equation with Critical Exponent

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence of solutions for elliptic systems with critical Sobolev exponent ∗

We establish conditions for existence and for nonexistence of nontrivial solutions to an elliptic system of partial differential equations. This system is of gradient type and has a nonlinearity with critical growth.

متن کامل

EXISTENCE AND CONCENTRATION OF SOLUTIONS FOR A p-LAPLACE EQUATION WITH POTENTIALS IN R

We study the p-Laplace equation with Potentials − div(|∇u|p−2∇u) + λV (x)|u|p−2u = |u|q−2u, u ∈ W 1,p(RN ), x ∈ RN where 2 ≤ p, p < q < p∗. Using a concentrationcompactness principle from critical point theory, we obtain existence, multiplicity solutions, and concentration of solutions.

متن کامل

Existence of soliton solutions for a quasilinear Schrödinger equation involving critical exponent in R

Mountain pass in a suitable Orlicz space is employed to prove the existence of soliton solutions for a quasilinear Schrödinger equation involving critical exponent in RN . These equations contain strongly singular nonlinearities which include derivatives of the second order. Such equations have been studied as models of several physical phenomena. The nonlinearity here corresponds to the superf...

متن کامل

EXISTENCE OF SOLUTIONS TO A PARABOLIC p(x)-LAPLACE EQUATION WITH CONVECTION TERM VIA L∞ ESTIMATES

This article is devoted to the study of the existence of weak solutions to an initial and boundary value problem for a parabolic p(x)-Laplace equation with convection term. Using the De Giorgi iteration technique, the authors establish the critical a priori L∞-estimates and thus prove the existence of weak solutions.

متن کامل

MULTIPLE SOLUTIONS FOR THE p−LAPLACE OPERATOR WITH CRITICAL GROWTH

In this paper we show the existence of at least three nontrivial solutions to the following quasilinear elliptic equation −∆pu = |u| ∗ u + λf(x, u) in a smooth bounded domain Ω of R with homogeneous Dirichlet boundary conditions on ∂Ω, where p = Np/(N − p) is the critical Sobolev exponent and ∆pu = div(|∇u|∇u) is the p−laplacian. The proof is based on variational arguments and the classical con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physics Procedia

سال: 2012

ISSN: 1875-3892

DOI: 10.1016/j.phpro.2012.05.321